Reynolds-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system
نویسندگان
چکیده
This paper presents a recent numerical study conducted by researchers at the National Renewable Energy Laboratory on a point absorber wave energy conversion (WEC) system using a Reynolds-averaged Navier–Stokes (RANS)-based Computational Fluid Dynamics (CFD) method. The device we studied was a two-body floating-point absorber (FPA) that operates predominantly in heave and generates energy from the relative motion between the two bodies. We performed a series of numerical simulation to analyze the hydrodynamic response and the power absorption performance of the system in regular waves. Overall, it was successful to use the RANS method to model the complex hydrodynamics interaction of the FPA system. We demonstrated the significance of the nonlinear effects, including viscous damping and wave overtopping. The study showed that the nonlinear effects could significantly decrease the power output and the motion of the FPA system, particularly in larger waves. 2012 Published by Elsevier Ltd.
منابع مشابه
Investigation of the effect of geometry float body on the power of wave energy absorber converter using mooring catenary
This paper presents the effect of hydrodynamic parameters of the two-body converters of a point wave absorber on the amount of power output. This converter includes two submerged and floating bodies which are connected to the spring-damper system. The whole of the converter is connected to the sea bed by mooring catenary. The relative displacement of the floating body and the submerged body is ...
متن کاملExperimental Study of the Performance of Floating Breakwaters with Heave Motion
Nowadays, the application of floating breakwaters in small or recreational harbors has found more popularity. These types of breakwaters are more flexible in terms of design, configuration and especially installation compared with fixed breakwaters. In the current study, the performance of floating breakwater (FBs) under regular waves was studied using the physical modeling method. For the mode...
متن کاملRANS Computational Fluid Dynamics Predictions of Pitch and Heave Ship Motions in Head Seas
This work extends the previous effort in unsteady Reynolds averaged Navier-Stokes (RANS) simulations developed by the ship hydrodynamics group of the University of Iowa Iowa Institute of Hydraulic Research to the capability to predict pitch and heave motions of ships with forward speed in regular head seas. The simulations are performed with CFDSHIP-IOWA, which is a general-purpose, multiblock,...
متن کاملSimulating Dam - Break Flooding with Floating Objects through Intricate City Layouts Using GPU - based SPH Method
For the fast transient dam break flooding with floating bodies presented through intricate city layouts, the traditional grid-based method based on solving two dimensional (2D) Shallow Water Equations or three dimensional (3D) Reynolds-averaged Navier-Stokes equations have difficulty in modelling the 3D unsteady flow features and the moving objects in the flow, causing inaccuracies. In this pap...
متن کاملNumerical Study of the tongue geometry effects on the cavitation and performance of a centrifugal pump in off-design conditions
In this study, the effects of the volute tongue geometry variation on the head, efficiency, velocity distribution and cavitation structure of a centrifugal pump in the steady flow behavior under off-design conditions have been investigated. Numerical simulation modeling based on the turbulence model with a hybrid grid is used to simulate the flow within the modeled pump. The flow is simulated ...
متن کامل